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Small amplitude resonance oscillations in a nonlinear system close to the stabi- 
lity limit are considered. The Van der Pol equation with a supplementary para- 
meter is derived for the oscillation amplitude ; in an autonomous system that 
parameter defines the dependence of oscillation frequency on amplitude. 
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Development of stationary motions with parameter variation is investigated using 
the amplitude equation. Resonance acoustic oscillations of a polytropic gas, in- 
duced by a piston in a long pipe with a chamber at its end, are considered as an 

example. 

1. Resonance phenomena are possible under periodic action on systems defined by 

equations in partial derivatives. Examples of resonance are well known in the theory of 
elasticity,acoustics and electrodynamics. Resonance in self-excited systems may induce 
modes of beat and of forced oscillations ; resonance in a gas discharge which is unstable 

with respect to stria excitation provides an example of this [l]. 
Here we consider resonance oscillations of small amplitude for which deviations of 

dependent variables (density, velocities, current, etc. ) from their equilibrium values in- 
dependent of time are small. The derivations can be small, if the amplitude e of the 
periodic perturbation of the autonomous system are small. 

Similarly to the autonomous systems considered in [2], the problem for the deviation 
vector X is derived by expanding the input nonlinear equations and boundary conditions 
in series in powers of X and E The simplest nonautonomous equation linear with re- 
spect to Iz is 

ax / at + L,X + ,&X2 + La3 + . . . = eEC + c. c., E = ebt (1.1) 

Here and subsequently c. c. denotes an expression that is complex conjugate of the pre- 
ceding one. Coefficients L = L (0, z, A), where A. are parameters of the system, 5 
are space coordinates, and u = 8 / Oz are operators of differentiation ; coefficients 
L real with respect to D are polynomials. Terms in the right-hand part of (1.1) de- 

fine perturbations of complex amplitude E of a form defined by the complex veator 

C = C (CC). 
It is assumed that the region of variation of J: is bounded and the boundary conditions 

are of the simplest form: if CC belongs to the region boundary, UX = 0, where u = 
U (D, 5, h) , is a real matrix. The general case when equations and boundary condi- 
tions contain higher powers of a, X and d / at, is considered in Sect, 4. 

Since stationary (or close to these) states of the system are considered below, the boun- 
dary value problem is solved without initial conditions. 

For E = 0 Eq.(l. 1) is autonomous. Solutions of the autonomous problem linear with 
respect to X are determined by equations 

X = X, (cc)ePot, pox, + L,X, = 0, ux, = 0 (1.2) 

If X is a solution of problem (1.2), then x is also a solution, hence we consider below 
eigenvalues pa = yO + iQ2, with frequencies J2, > 0. 

It is assumed that critical values of the system parameters h = h, exist for which one 

of the eigenvalues (below called critical and assumed to be simple) becomes pure-ima- 
ginary (pO = iP *), and that the increments y. (A*) of all other eigenvalues are ne- 
gative and not small. 

The principal resonance occurs for E # 0 , if the frequency difference p = p. - io 
is smal1,i.e. the increment y. and the real frequency difference 4 = 62 o - o are 

small (in comparison with 0). The perturbation amplitude E is also to be considered 
small so that the quantity X could be small for considerable t. The small parameters 
Yo, A and e are obviously independent, their ratios can be arbitrary. 

The method of finding stationary oscillations in autonomous systems in [Z] is extended 
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to the case of nonautonomous systems, as is done in the theory of oscillations [3, 43. 
The solution is sought in the form of series in powers of the small quan~ties QE, EE , 
and of their complex conjugate 

X = [E WI + WV3 + 8X*) + (m?)2&l -t C.C. + QQX, + .,. (1.3) 

The series coefficients X, depend only on x, and x’, is the eigen function of problem 

(1.2) which corresponds to the critical p@(with frequency 0 a > 01. The equation for 
the oscillation amplitude Q (t) is also sought in the form of series in 0 and E and 

their conjugate 

As in the case of autonomous systems [2], the coefficients in (1.3) are successively deter- 
mined from linear inhomogeneous boundary value problems ; the conditions of coeffici- 
ent boundedness for p --+ 0 determine the coefficients in (1.4). 

Inhomogeneous problems are obtained after the substitution of (1.3) and (1.4) into 
(1.1) and the boundary conditions are derived by equating terms with like powers of E, 

Q, Q’: E and E. It is sufficient to consider problems that correspond to nonnegative 
powers v of quantity E, For v p 1 solutions of such problems are bounded, while for 

Y = 1 they are finite for p -+ 0 only if 

<Y*Z,z ‘(Y.Z]dr=O 
J (1.5) 

where Y is the free term of the inhomogeneous problem, z is the eigen function of the 
problem conjugate of problem (1.2) with the critical value pO, and integration is car- 
ried cut over the region of variation of z. The coefficient in of series (1.4) at powers 

of Q, 3, E and S, appearing linearly in Y and determining the inhomogeneous problem, 

is obtained from (1.5) (e. g. pa is determined from the problem for X3 and pl from 

#at for X,). 

In what follows the system behavior is investigated on the basis of the approximate 

equation (1.4). To make such approximation possible it is necessary for the retained 
explicitly written terms to be the highest, The latter takes place, when for h = h, the 

quantities pn = y% + iS& fn = 1,2) are not smalI ; it is assumed that these conditions 
are satisfied. In investigations of stability of stationary osciUations it is also necessary 
to assume that yz is not small (as in the case of E = 0) . 

To determine pn it is necessary to retain in ( 1.3). ( 1.1) the explicitly written terms. In the 

approximation used here it is sufficient to determine the quantities pn and X,for h = h, 

and o=G&. It is convenient to determine pl,z and X3,* simultaneously,setting 

y = X, -!- gX,, p = pz + gp,, g = E I CQ’ql IL 61 

and considering the particular case of g - 1 (here and subsequently the relation a - t, 

is equivalent to a = 0 (b); in these relationships and inequalities complex numbers are 
equal in module}. It may be more convenient in practical applications to determine the 
coefficients in (1.3) and (1.4) in the form of series in h - r* and o - 0,. 

An example of the computation of P ir given in Sect. 5, 
Generalizations of the nonautonomous problem (1.1) are considered in Sect, 4, where 

the complete series (1.3) and (1.4) are also presented. 

2. Periodic oscillations of the system correspond to stationary solutions ( 1.4). while 
nearly-periodic oscillations (beats) correspond to periodic solutions, Observed oscillations 
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correspond to stable solutions. Stationary solutions (a / dt = 0) are considered in this 
Section. 

The estimate Q N min (alla, e / p) can be readily obtained from (1.4). A linear 

resonance occurs for e’/s < p , since nonlinear effects are unimportant for the deter- 

mination of the stationary amplitude ; in the opposite case the effects of frequency dif- 

ferences become unimportant. 
To determine the exact stationary solutions it is convenient to present (1.4) in the form 

dR / dz = (1 + iq){R [a (1 - iu) - RR1 + F + . ..} = H (2.1) 

R = -!$ ei(w-a), 

F = E $- pT3, 
I I 

p = 1 p 1 eip, pz = - 1 p2 1 eigz, &pI = 1 ep, 1 &l 

The Van der Pol equations analyzed in [3, 5 - ‘71 are obtained from (2.1) for 11 = 0, 

a = 1 and R = x -i- iy = reie Equations that reduce to (2.1) -ena derived and ana- 
lyzed in [S]. Results of a qualitative investigation of (2.1) and those obidned in [8] are 

presented below. 
First, the case of ~a ( 0 and q > 0 is considered. For stationary solutions (2.1) 

yields 
p [(a - p)” + a21 = f, p = RR, f = F2 (2.2) 

The reversal of signs of p and f in (2.2) for a = -1 yields Eq.(2.2) for a = 1. 
Instead of two equations (2.2) it is convenient to consider for p > 0 only the equation 
with a = 1 in region (--00 < p < m) using negative p and f for a = -1. 

The amplitude curves f (o, p) = const were constructed in [5]. In Fig. 1 continuous 
thin lines relate to curves f = (-8, -4, 0,2, 4,8) I 27 , and the heavy dash lines 

relate to the ellipse aj / i3p G (1 - p)(l - 3~) + cr2 = 0 . The amplitude curves 
at points of intersection with the ellipse are vertical. 

Fig. 1 Fig. 2 Fig. 3 

Small deviations from equilibrium are proportional to exp (xt). From (2.1) we obtain 
X = a * (a2 - b2)“‘, a~Re(aHlaR)=a(1+oll_22p) 

(2.3) 
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where the derivatives are determined at the equilibrium point. It follows from (2.3) 
that inside the ellipse lie saddle points, 

The straight line a = 0 intersects the e-axis at point 51 = - 1 / q and the ellipse 

at points 2 and 3. Fig. 1 relates to n > 1 / v/3 = q* when point 4 lies under the straight 
line. 

Thin dash straight lines in Fig. 1 are tangent to the ellipse at points 2 and 3 and inter- 
sect the G -axis at point 6 = q; nodal points lie between these straight lines. Points of 

the ellipse are saddle-nodes (except the degenerate (angle) points 2 and 3, and nodal 
points 4 and 5). The remaining singular points are focal points. 

Nodal and focal points are unstable if they lie between the straight line a = 0 and 
the a -axis in the first and third quadrants formed by the 6 -axis and the straight line 

5 = or which corresponds to the stability boundary y,, = 0. The second and fourth quad- 
rants correspond to y0 < 0. For a continuous variation of parameters the transition from 

the upper half-plane to the lower (and conversely) in Fig. 1 occurs only through an infi- 
nitely distant point and into the opposite quadrant. 

It can be shown with the use of methods [2, 91 that for 6 # n, a = 0 are compound 
focal points of first multiplicity ; those lying above the ellipse or the parabola 2p = 1 + 
02 (the dash-dot line in Fig. 1) are unstable. The limit cycle R (t) around focus R 

with a small p is 
R (t) = R + (R / I R J) (3 + Q/) 

(2, y) = l/z SeiQL [ibli2 - up, rd] + r c + 0 (S*) 

where a and b are determined in (2.3). An unstable cycle exists for a < 0, a < n and 

d < 0, and a stable one for a > 0 and d (6 - q) < 0. 

Investigation of the compound focus 6 at the parabola is difficult owing to the awk- 

wardness of related computations. It is reasonable to assume that this focus is of second 
multiplicity for any 9, except the possible critical values at passage through which the 
focus changes stability. 

8, Knowing the nature of singular points it is possible to determine the structure of 
the phase plane of Eq. (2. 1) for various values of parameters 6 and f. 

The pattern of the subdivision of the parameter plane (Fig. 2) into regions of invaria- 
ble (or slightly variable) structure is considered below. When that subdivision is known, 
the behavior of the system under parameter variation is determined elementary. 

The similarly drawn curves and points denoted by the same numerals in Fig. 2 corre- 
spond to curves and points in Fig, 1 (owing to the presence of several singular points the 
reverse relationship is ambiguous). 

The plane in Fig. 2 is divided by the b-axis and the straight line 6 = 6* into four 
quadrants. In the second and fourth quadrants a = CC (1 $- on) - 2RR < 0 for any R, 

hence according to the Bendickson criterion there are no limit cycles. The integral 
curves run from an unstable infinitely distant point to one of the stable points (there can 
be only two such points in the second quadrant for n > 1/5 when 6.~ < 6,). The same 
structure appears in a part of the third quadrant where the focal point is stable. If the 
focal point is unstable, there exists a limit cycle generated by the compound focal point 

at loss of stability. 
A stable cycle exists in the first quadrant between the a-axis and the curve 1, 2, 7, 0, 
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11, 9,6, co. At intersection of curves 1,2 and 6,~ the cycle vanishes by contracting 
into the focal point. At intersection 2,7 (9,ll) the cycle vanishes by merging with the 

saddle point separatrix which lies outside (inside) the cycle. At intersection 7, 0, 11 

the cycle vanishes because of the appearance on it of a saddle-node, and at intersection 
9,6 the cycle vanishes by merging with the linear inner unstable cycle. 

An unstable cycle exists in region 3,8,10,9,6,3. At intersection 3,6 it contracts into 

a point. At intersection 3,8 (9,10) it merges outside (inside) the cycle with the saddle 
point separatrix, and at the intersection 8,lO a saddle-node appears in the cycle, 

Point 9 lies on curve 2,3 (a saddle point on the straight line 2,3 corresponds to it in 

Fig. 1). 
When n decreases to % the region of unstable cycle vanishes by contracting to point 

4. For 6 > 0 and r), > q > 0 regions of invariant structure are the same as in Fig. 2 

for Q < 0. For q = 0 Fig. 2 is symmetric about axis f and according to [‘I] f7 > fi . 
A change of q results in a turn of the direction field of Eq. (2.1) by a constant angle. 

The results obtained in [9] show that in this case the double cycle splits with increasing 
n into two, i.e. the curve 6,9 recedes from point 4. This and the absence of cycles in 
the second quadrant imply that the curve 6,9 lies in the region D > 0. 

The subdivision shown in Fig.2 was obtained in [8]; it corresponds to a stable focal 

point 6. When 11 passes through certain values a change of the focal point stability is 

possible, Let q12 be one of such values with the focal point 6 unstable for q > nlz and 
stable for 9 d q12, and then the focal point neighborhood is of the form shown in Fig.3. 
Three cycles exist on curve 6,13,14 in region 6,13,14 one of which is double, and at 
point 13 there is a triple cycle. With increasing q curve 6,X3 recedes from point 4. 

The case of yz < 0 and 9 > 0 was considered above; that of y2 < 0 and rl d 0 

needs no explanation, and that of y2 = 0 is considered below. The case of y2 > 0 differs 
from the considered by the direction of trajectories of Eq.(2.1). 

Note the relation between the resonance oscillation pattern and the stability index of 

an autonomous system, If vo d 0, then for y2 < 0 the oscillations are periodic and if 
y. > 0, then beats are also possible. Small amplitude oscillations are not possible for 
y2 > 0 and y. > 0 , when y. < 0, then small oscillations (either periodic or beat) are 
possible. 

4, Generalizations of problem (1.1) and cases of violation of some of the limitations 
introduced above are considered in this Section. 

It was assumed above that y2 is not small. If this is not so, the stationary solution Q 

(as before, determined by (2.1) and (2.2)) is stable if Y o < y* < 0, where y* - QE. 
These conditions are associated with the effect of terms -Q% and 45 in( 1.4) onstability. 

If pn in (1.4) are small, it is necessary to retain the disregarded terms of series (1.3) 
and (1.4). These series are of the form 

x= 5 X$V (4.1) 
v=--m m n+v n 
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Coefficients p are determined by the condition of boundedness of coefficients in X1 for 

small frequency differences. In the case of considerable real frequency differences Eq. 
(4.1). although usable, is ineffective, since it necessitates additional transformations. In 
the case of problem (1.1) with initial condition X (0) = X, (where X+ is small) it can 
be expected that Eq.(4.1) defines the system behavior beginning at t -, 1 / y* (y* is 
the minimum decrement of noncritical eigenvalues of problem (1.2) ), when according 

to the linear theory only oscillations defined by the critical value p0 are important in 

the system. Hence it is possible to take as the initial condition for (4.1) Q (0) = Q+ = 
(X+-Z) / (X,.2), where the notation is the same as in (1.5). Expansions (4.1) are also 
applicable in boundary value problems with nonlinear nonautonomous boundary condi- 
tions. These equations and conditions may contain higher order derivatives with respect 

to t and nonautonomous terms dependent on X; the latter may be nonlinear with re- 
spect to e and nonharmonic with respect to explicit c. For the applicability of appro- 
ximation (1.4) it is necessary for the free term - & in the equation and in the bound- 
ary condition tobe harmonic ; if it is periodic with slowly decreasing harmonics, then 
(1.4) is applicable for e 4 Qa owing to the effect of harmonics with frequencies o = 0 

and 261,. 
It was assumed above that problem (1.2) has only one critical po. Let ps be another 

such value (ya is small) ; then there exist two relatively prime numbers m and n for which 
ps z (n / m) p,,, i. e. there is internal resonance. By jointly considering the equations 

for Q and Qs it is possible to find that approximation (1.‘4) is applicable to Q if m + 

n > 4, ~3 < ye < 0, where y* - Q2 - e”; when the perturbation is nonharmonic, there 

must be no principal resonance of frequency Bt. 
We note in conclusion that all of the above applies also to systems defined by ordinary 

differential equations. 

6, As an example let us consider the problem for X = (5, W) 

’ W’ = 0 W ‘+ 8’ + @,’ + hW = ii 

f 2 w2 / p I p + pp / B = w2 (1 - f) + E2 (h + h*E) + . . . 
(5.1) 

h = Vs (p - 11, h, =1/s h (fl = 2); 0 < x < 1= 1 + 2 (E / 0) sin c0t 
(a%’ + W)O = 0 (W)l = 2 (p)r E cos Ot 

This problem defines oscillations of gas in a pipe with a chamber, that are induced by 
an impermeable piston moving at the opposite end of the pipe at velocity 2s Cos at. 
The problem is defined in dimensionless form such that for E-= 0 the pipe length, the 
speed of sound, and the density of gas in equilibrium are equal unity ; E = p - 1 is the 
density deviation, w = pU (where v is the velocity), hw is the friction force at the Wall ; 
parameter h is proportional to the dimensionless coefficient of kinematic viscosity divided 
by the square of the pipe radius ; a is the ratio of volumes of chamber and pipe, and the 
pressure of gas is $. The dot and prime denote differentiation with respect to t and 5 , 
mspectively; the subscripts 0 and 1 outside parentheses in the boundary conditions re- 
late to x = o and 1 , respectively. The first condition relates to the case when the cham- 
ber size is small in comparison with l/o and, consequently, the dependence of pressure 
in the chamber on coordinates is negligible. 

The condition of total mass of gas WnWrVatiOn 
1 
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is used below. It is obtained by integrating the equation of continuity from 5 = 0 to 
5 = I + 0 with allowance for boundary conditions and equalities p = w = 0 for x > 1. 

Solution of the linear autonomous problem (5.1) is determined by the relationships 

p. = ik, k = ‘la ih + (X2 - “I4 ha)“*, tg X = - ax (5.3) 

( 
k 

XI= cos0,- iy- sin 8 , 
) 

e=x(z-f)* X2=0, O,<x<f 

The eigen function 2 of the conjugate problem is obtained from X, by the substitu- 
tion k + x; below we use the values of eigen functions for h = 0, when 2 = X1 and 
(X1.2) = i. 

In what follows frequency o is assumed to be close to the first root x = x1 of Eq.(5.3). 
The value of a is selected so that internal resonances do not violate approximation (1.4); 
such values exist (e.g. f mxS - RX I> lfg, if m i- R < 10t a = 0.81, s > i). The num- 
ber k = x = 0 and unctions X1 = 2 = (i ,O) (they only define density variations) are 
also eigenvalues and eigen functions, which does not lead to any difficulties, since varia- 
tions of density satisfy condition (5.2). 

Terms - Qe are not taken into account in approximation (1.4). It is possible to as- 
sume that in the second boundary condition (5.1) (P)~ = 1 which is accurate to within 
these terms; the same accuracy obtains when 1 = 1 is assumed (this can be readily 
ascertained by introducing the new coordinate Y = 5 I 2). 

For h = 0 and o = x: from (5.1) we obtain for X, in (2.3) 

I’nx% + w’ = 0, inxw + %’ + CD,’ = 0 
(in%% + 240 = 0 (w)x = 0 (n = 0,Z) 
aa = Q2 + kE12, CD, = 2 (I 70, 1” + h 1 & 12) 

The solutions of these problems are 

w. = 0, f, = (h - 1) (cO + cos 26), c0 = (sins x) / (1 + 1 / a) (5.4) 
wa = Vai (1 + n) (26 co8 20 + cI sin 20), Es = U4 (1 + h) X 

126 sin 26 - (1 + cl) co9 201, ca = (1 + 1 / a) (ax)-a + 3 / a - 1. 

where the constant c, is determined by condition (5.2) for %,,. The equality W, = 0 
means that in the course of ~tab~s~ent of oscillations the dis~ibution %, is generated 
by the mean stream u)~ = 0 (42). 

For Y in (1.6) we obtain 

ix% + w’ + P%, = 0, iXw + %’ + Pw, + cb8' - 0 (5.5) 
= (ix% + P%J, + (wO) = 0, (W)Z = g 
@s = 2w,w, - w&x - 2 IWr 12 %1 + 2k (%,%I -I- %& + 3h*%&1 

The substitution 
Y=Y,+A/(ix), A=(-g/U--PCOS, ixg) 

reduces (5.5) to the problem for Y, with homogeneous conditions and the free term 
q = A + (0, @s’) + PX1. A solution of this problem exists if (Ip*Z> = 0; this yields 

1 

P= - (g + iJ)(l + acos~x)-1, J = 
s 

CDs’ sin 6 dx (5.6) 
0 

It is seen from (5.3)-(5.6) that J is real, hence ye = 0, For b = 1 
8J = (ca + 1) (x - 2 sin 2x + VP sin 4x)_+ 2x (i-2 Co8 2X + Vd Cos 4% + 

(16x)-l sin 4x) > 0 
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since for x < 3/4 n each multiplier is positive, while for x > s/4 n with allowance for 
the increase of cs (x) we have 

For J # 0 and h > 0 Eq. (1.4) can have one stable stationary solution Q or two stable 
(with a considerable and a small 1 Q I) and one unstable. 
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The problem of determination of the shape of bodies that have solidified in a 
moving fluid, of heat exchange between these and the fluid is encountered in 
domains such as underground construction by freezing water-saturated rocks, heat 
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